
Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

1

Introduction: The main purpose of this project is to implement a floating point calculator that

can do the following functions:

- Multiply two 2 bits number and display result when “=” button is pressed

- Divide two 32 bit numbers and display result when “=” button is pressed

- Change the sign of the number and display the result when the “=” sign is pressed

The FP calculator is implemented using a Keypad and an Altera DE2 FPGA development board.

The results are being displayed on a 7 segment display. The results are displayed in Hex. The

keypad is attached to the DE2 board using the GPIO pins. The Keypad is restricted to 20 Keys.

The design is made using Quartus and everything is programmed in AHDL.

The code for the design can be found under appendix at the end of the report.

Figure 1: Here is the set up for the project

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

2

Figure 2 : The keypad that consist of 20 Keys

Figure 3: The seven segment display the Hex of the number being pressed. In this case 2 is being pressed, so it shows 0x4000

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

3

For this project the IEEE 754, 32 bit floating point standard is being used. The numbers being displayed

on the 7 – Segment display are Hexadecimal number as it can be seen from figure 3.

Round Even and Round Odd standard: When the division leaves the reminder and the result is not exact

we need to decide how we are going to round the result. If the reminder is 0, it means that the number

is exact. But if the reminder is in between 1 -3 the result is truncated to nearest integer value. If the

reminder is in between 5-9, the result is incremented by adding 1 to it. The diagram below shows how it

works.

 000 : Result is Exact

 001
010 : Choose the truncated number by 1

 011

 100

 101
 110 : Choose the incremented value by 1

 111

For the case when the result is exactly in between the truncated and incremented values we need to

choose what we would like to make the result.

If the result is chosen to be even then it is called even round. For example for the number like 378.5 if

the even round about is applied the result will be 386, which is even. For number like 377.5 if the even

round about is applied the result will end up being value incremented by 1, which is 378. This same thing

can be applied to odd round about. In that case 377.5 will be 377.

So with even or odd round about half the time result will end up being truncated to the nearest even

/odd value and other half time the result will be incremented by 1 to the nearest even/odd value.

Data Flow:

The Quartus Floating point calculator project is consist of 4 different modules that falls under the one

top level design.

Here is the hierarchy.

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

4

Figure 4 : Hierarchy for the FP calculator design

The four modules are included in the top level design as include files. The design runs on 27MHz clock.

Here are the outputs and inputs to the design.

Inputs: 27MHz clock, row bits from the Keypad

Output: Column bits to the Keypad, Seven segment display

The four modules inputs and outputs are connected to the FPCalc.tdf via wires. All four modules are

instantiated in the main design.

Calculator consists of two 32 bit floating point registers. Xx and yy. The final result for any operation is

always stored in xx register.

Multiplication unit: The instantiation used for the FPMult in the design is MultUnit. The xx and yy

registers of MultUnit are wired to the xx and yy register in the design respectively. The last key in the

first row on the keypad is associated with the multiplication operation. “op” is a filp flop , that can

assume only two values , either 0 or 1. The value 0 is assigned to the multiplication operation in this

design.

Division Unit: The instantiation used for the FPdivide in the design is DivUnit. The xx and yy registers of

DivUnit are wired to the xx and yy register in the design respectively. The last key in the second row on

the keypad is associated with the division operation. The value 1 is assigned to the division operation for

the “op” FF in this design.

Sign Change: This is the simplest of all operation. It needs very few lines of code. That is why is designed

directly in the top level design. The last key in the thirst row is associated with the sign change

operation.

The last key in the fourth row is equal to operation.

This is one module : Hto7Seg

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

5

Adding new operations: if the new operation like addition and subtraction are to be added to the

calculator design we will need two new modules. FPSub and FRAdd. Two separate keys will be needed

on the calculator that represents Addition and Subtraction.

The design of these two modules will be quite similar to the Multiplication or division unit only the state

machine will be simpler for this operation. We will need two floating point registers that we can use for

the add / sub operations and that will be wired to the top level design the same way we wired the other

two modules.

Control Units: Here are the state diagrams for the controller, multiplication, division and Keypad.

Figure 5 : State Diagram for Controller

Figure 6 : State Diagram for multiplication

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

6

Figure 7 : State Diagram for Division

Figure 8: State Diagram for Keypad

Summary:

The 32 bit floating point calculator is capable to do ×, ÷, ±, and = operations. It uses a simple 3 state

controller to implement this and displayed the results to the seven segment display on the board.

Here are the few things that can improve the current design:

- Add more function like Addition and Subtraction

- Add reset to the design instead of defaulting the registers values to 1

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

7

- Add an ON/OFF switch

- Being able to store the result after doing one operation to do more operations on it

Other than these we can add in a lot more other features to the design to make it better and more

versatile.

Appendix:

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

8

FPclac.tdf

include "FPmult.inc";
include "FPdivide.inc";
include "Hto7seg.inc";
include "Keypad.inc";

Subdesign FPCalc
 (
 Clk27M :Input;
 r[0..3] :Input;
 c[0..3] :Output;
 SevenSeg[55..0] :Output; -- results showm on 7-seg display
)
Variable
 xx[31..0], yy[31..0] :Dff;
 dig[7..0] :Hto7seg;
 op
:Dff;
 MultUnit :FPmult;
 DivUnit :FPdivide;
 Keyinterface :Keypad;
 key1,key2,key3,key4 :Node;
 keyCS,keyDiv,keyMult :Node;
 keyEq,keyUnused,newkey :Node;
 State :Machine
 With States(Init,Keys,Oper);
Begin
 xx[].clk = Clk27M;
 yy[].clk = Clk27M;
 State.clk = Clk27M;
 op.clk = Clk27M;

 MultUnit.Clk = Clk27M;
 MultUnit.xx[] = xx[];
 MultUnit.yy[] = yy[];
 DivUnit.Clk = Clk27M;
 DivUnit.xx[] = xx[];
 DivUnit.yy[] = yy[];
 Keyinterface.Clk27 = Clk27M;
 Keyinterface.r[] = r[];
 newkey = Keyinterface.nk;
 c[] = Keyinterface.c[];
-- prod[].d = MultUnit.prod[];
-- quo[].d = DivUnit.quo[];
-- prod[].clk = CLK27M;
-- quo[].clk = CLK27M;
-- MultDone = MultUnit.MultDone;

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

9

-- DivDone = DivUnit.DivDone;

 dig7.in[] = xx[31..28];
 dig6.in[] = xx[27..24];
 dig5.in[] = xx[23..20];
 dig4.in[] = xx[19..16];
 dig3.in[] = xx[15..12];
 dig2.in[] = xx[11..8];
 dig1.in[] = xx[7..4];
 dig0.in[] = xx[3..0];
 SevenSeg[55..49] = dig7.out[];
 SevenSeg[48..42] = dig6.out[];
 SevenSeg[41..35] = dig5.out[];
 SevenSeg[34..28] = dig4.out[];
 SevenSeg[27..21] = dig3.out[];
 SevenSeg[20..14] = dig2.out[];
 SevenSeg[13..7] = dig1.out[];
 SevenSeg[6..0] = dig0.out[];

-- Decoded Keys for the Keypad

 key1 = Keyinterface.Rn[]==0 & Keyinterface.Cn[]==0;
 key2 = Keyinterface.Rn[]==0 & Keyinterface.Cn[]==1;
 key3 = Keyinterface.Rn[]==0 & Keyinterface.Cn[]==2;
 key4 = Keyinterface.Rn[]==0 & Keyinterface.Cn[]==3;
 keyMult = Keyinterface.Rn[]==0 & Keyinterface.Cn[]==4;
 keyDiv = Keyinterface.Rn[]==1 & Keyinterface.Cn[]==4;
 keyCS = Keyinterface.Rn[]==2 & Keyinterface.Cn[]==4; -- +/- (change-sign key)
 keyEq = Keyinterface.Rn[]==3 & Keyinterface.Cn[]==4; -- = (the equal key)
 keyUnused = Keyinterface.Rn[]!=0 & Keyinterface.Cn[]!=4; -- assuming bottom left 4x3 key area not
used

-- The following is the main state machine -- most activities happen in the Keys state.
-- A value must be assigned to xx[], yy[], op and next State for every possible
-- condition in each state WITHOUT OVERLAP (setting it to different things in
-- conditions that overlap so both are true). I think I have done that below,
-- but I have not reread it or tested it in any way.

 Case State Is
 When Init =>
 xx[].d = H"3F800000"; -- Initial value is 1.0
 yy[].d = H"3F800000"; -- Initial value is 1.0
 -- op will become 0 which specifies multiply
 State = Keys;

 When Keys =>
 -- first handle the no keypress condition and unused keys (lower left 4x3)

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

10

 If !newkey # newkey & keyUnused Then
 xx[].d = xx[]; yy[].d = yy[]; op.d = op; State = Keys;
 End If;

-- -- the following section handles the multiply and divide keys
-- If newkey & (keyMult # keyDiv) Then
-- yy[].d = xx[]; xx[].d = xx[]; State = Keys;
-- op.d = keyDiv; -- this sets op = 0 for Mult and op = 1 for Div
-- End If;

 If newkey & keyMult Then
 yy[].d = xx[]; xx[].d = xx[]; State = Keys;
 op.d = B"0"; End If;
 If newkey & keyDiv Then
 yy[].d = xx[]; xx[].d = xx[]; State = Keys;
 op.d = B"1"; End If;
--
 -- Handle the change-sign keypress
 If newkey & keyCS Then
 yy[].d = yy[]; op.d = op; State = Keys;
 xx[].d = (!xx31,xx[30..0]);
 End If;

 -- Handle the number keys
 If newkey & key1 Then
 yy[].d = yy[]; op.d = op; State = Keys; xx[].d = H"3F800000"; End If; -- 1.0
 If newkey & key2 Then
 yy[].d = yy[]; op.d = op; State = Keys; xx[].d = H"40000000"; End If; -- 2.0
 If newkey & key3 Then
 yy[].d = yy[]; op.d = op; State = Keys; xx[].d = H"40400000"; End If; -- 3.0
 If newkey & key4 Then
 yy[].d = yy[]; op.d = op; State = Keys; xx[].d = H"41200000"; End If; -- 10.0

 -- next handle the equal sign
 If newkey & keyEq Then
 yy[].d = yy[]; op.d = op; State = Oper;
 xx[].d = xx[]; MultUnit.start = !op; DivUnit.start = op;
 End If;

 When Oper =>
 yy[].d = yy[]; op.d = op;
 If (MultUnit.MultDone # DivUnit.DivDone) Then -- only the operation started can
assert done
 State = Keys; xx[].d = MultUnit.prod[] + DivUnit.quo[]; -- one will be zero so not harm
other
 Else
 State = Oper; xx[].d = xx[];
 End If;

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

11

 End Case;
End;

FPmult.tdf

Subdesign FPmult
 (
 xx[31..0], yy[31..0], Clk, Start :Input; -- fp numbers to multiply & start signal
 prod[31..0], MultDone :Output; -- product and a done signal
)
Variable
 S, E[9..0], A[23..0], B[23..0] :Dff;
 R, SB, P[24..0], MultDone :Dff;
 Done, Rneed :Node;
 State :Machine
 With States(Wait,Step,Shift);
Begin
 S.clk = Clk; E[].clk = Clk; A[].clk = Clk; B[].clk = Clk; State.clk = Clk;
 R.clk = Clk; SB.clk = Clk; P[].clk = Clk; MultDone.clk = Clk;

 Done = (A[]==0)&!P24; Rneed = R&SB # P0&R&!SB;
 prod[] = (S,E[7..0],P[22..0]);

 Case State Is
 When Wait =>
 If Start Then
 S.d = xx[31] $ yy[31]; A[].d = (1,xx[22..0]); B[].d = (1,yy[22..0]);
 E[].d = (0,xx[30..23]) + (0,yy[30..23]) - 127 - 24; State = Step;
 Else
 State = Wait; --Note: All Dffs go to zero so prod[] becomes zero
 End If;
 When Step =>
 S.d = S; R.d = P0; SB.d = SB # R;
 A[].d = (0,A[23..1]); B[].d = B[];
 If !Done Then
 P[].d = (0,P[24..1]) + (0,A0&B[]); E[].d = E[] + 1;
 State = Step;
 Else
 E[].d = E[];
 If !Rneed Then
 P[].d = P[]; MultDone.d = B"1"; State = Wait;
 Else
 P[].d = P[] + 1; State = Shift;
 End If;
 End If;
 When Shift =>
 S.d = S; MultDone.d = B"1"; State = Wait;
 If P24 Then

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

12

 E[].d = E[] + 1; P[].d = (0,P[24..1]);
 Else
 E[].d = E[]; P[].d = P[];
 End If;
 End Case;
End;

FPdivide.tdf

Subdesign FPdivide
 (
 xx[31..0], yy[31..0], Clk, Start :Input; -- fp divisor, dividend & start signal
 quo[31..0], DivDone :Output; -- quotient and a done signal
)
Variable
 S, E[9..0], A[24..0], B[24..0] :Dff;
 Q[23..0], DivDone :Dff;
 Neg, Done, Rneed, AmB[24..0] :Node;
 State :Machine
 With States(Wait,Step);
Begin
 S.clk = Clk; E[].clk = Clk; A[].clk = Clk; B[].clk = Clk;
 Q[].clk = Clk; DivDone.clk = Clk; State.clk = Clk;

 Done = Q23; Rneed = A[]>B[] # A[]==B[]&Q0;
 AmB[] = A[] - B[]; Neg = AmB24; quo[] = (S,E[7..0],Q[22..0]);

 Case State Is
 When Wait =>
 If Start Then
 S.d = xx[31] $ yy[31]; A[].d = (01,yy[22..0]); B[].d = (01,xx[22..0]);
 E[].d = (0,yy[30..23]) - (0,xx[30..23]) + 127 + 24; State = Step;
 Else
 State = Wait; --Note: All Dffs go to zero so prod[] becomes zero
 End If;
 When Step =>
 S.d = S; B[].d = B[];
 If !Neg Then A[].d = (AmB[23..0],0); Else A[].d = (A[23..0],0); End If;
 If !Done Then
 E[].d = E[] - 1; Q[].d = (Q[22..0],!Neg); State = Step;
 Else
 E[].d = E[]; Q[].d = (Q[] + (0,Rneed)); DivDone.d = B"1"; State = Wait;
 End If;
 End Case;
End;

Hto7seg.tdf

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

13

Subdesign Hto7seg
 (
 in[3..0] :Input; %hex value in%
 out[6..0] :Output; %7 segents out%
)
Variable
 zero,one,two,three,four,five,six,seven,
 eight,nine,AA,BB,CC,DD,EE,FF :node;
Begin
 zero = in[]==0;
 one = in[]==1;
 two = in[]==2;
 three = in[]==3;
 four = in[]==4;
 five = in[]==5;
 six = in[]==6;
 seven = in[]==7;
 eight = in[]==8;
 nine = in[]==9;
 AA = in[]==10;
 BB = in[]==11;
 CC = in[]==12;
 DD = in[]==13;
 EE = in[]==14;
 FF = in[]==15;

 out0 = !(zero # two # three # five # six # seven # eight # nine # AA # CC # EE # FF);
 out1 = !(zero # one # two # three # four # seven # eight # nine # AA # DD);
 out2 = !(zero # one # three # four # five # six # seven # eight # nine # AA # BB # DD);
 out3 = !(zero # two # three # five # six # eight # BB # CC # DD # EE);
 out4 = !(zero # two # six # eight # AA # BB # CC # DD # EE # FF);
 out5 = !(zero # four # five # six # eight # nine # AA # BB # CC # EE # FF);
 out6 = !(two # three # four # five # six # eight # nine # AA # BB # DD # EE # FF);
End;

Keypad.tdf

Subdesign Keypad
 (
 Clk27 : Input ;
 r[0..3] : Input ;
 --ro[0..3],st0o : Output;
 c[0..3] : Output;
 Rn[1..0] : Output;
 Cn[2..0] : Output;
 nk : Output ;
)

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

14

Variable
 %s[2..0] : Dff ;%
 ctr[19..0] : Dff ;
 nk,Rn[1..0],Cn[2..0] : Dff;
 done : Node ;
 count : Node ;

 %st0,st1,st2,st3,st4,st5,st6,st7 : Node ;%
 allones : Node ;
 State : Machine With
 States(st0,st1,st2,st3,st4,st5,st6,st7);

Begin
 --ro[] = r[];
 --st0o = st0;

 Ctr[].clk = Clk27;
 Ctr[].d = count & (Ctr[].q+1);
 Rn[].clk = Clk27;
 Cn[].clk = Clk27;
 nk.clk = Clk27;

 Rn1.d = st1 & (!r2 # !r3) # !st1 & Rn1;
 Rn0.d = st1 & (!r1 # !r3) # !st1 & Rn0;

 Cn[].d = Cn[].q & (st6 # st7 # st0);
 --Cn0 = c1 # c3 ;
 --Cn1 = c2 # c3 ;
 --Cn2 = Cn2 & !Cn2;
 --
 --c0 = State == st2 & nk ;
 --c1 = State == st3 & nk ;
 --c2 = State == st4 & nk ;
 --c3 = State == st5;
 %c4 = c4 & !c4;%

 done = Ctr19;
 %r[0..3] = !(!c0 & r[0..3] & c0 # !c1 & r[0..3] & c1 # !c2 & r[0..3] & c2 # !c3 & r[0..3] & c3
!c4 & r[0..3]& c4) ;%
 allones = r0 & r1 & r2 & r3;
 nk.d = allones & (st2 # st3 # st4) # st5;

 %s2.d = st2 & allones & nk # st3 & allones & nk # st4 & allones & nk # st3 & !allones #
st4 & !allones # st5 # st6 & !allones # st6 & allones # st7 & !done ;
 s1.d = st1 & done # st2 & allones & nk # st2 & !allones # st3 & allones & nk # st4 &
allones & nk # st5 # st6 & !allones # st6 & allones # st7 & !done ;

Virashree Patel Final Project Report 12/17/2015
 Floating Point Calculator

15

 s0.d = st0 & !allones # st1 & !done # st2 & !allones # st4 & !allones # st6 & allones # st7
& !done;%

 State.clk = Clk27;

 case State Is
 When st0 =>
 If !allones then State = st1;
 Else State = st0;
 End If;
 When st1 =>
 count = b"1" ;
 If done then State = st2;
 Else State = st1 ;
 End If;
 When st2 =>
 c0 = b"1" ;
 If allones then State = st6 ; Cn[].d = 0; End If;
 If !allones then State = st3 ; End If;
 When st3 =>
 c1 = b"1" ;
 If allones then State = st6 ; Cn[].d = 1; End If;
 If !allones then State = st4; End If;
 When st4 =>
 c2 = b"1" ;
 If allones then State = st6 ; Cn[].d = 2; End If;
 If !allones then State = st5; End If;
 When st5 =>
 c3 = b"1" ;
 State = st6; Cn[].d = 3 & allones # 4 & !allones;
 When st6 =>
 If allones then State = st7;
 Else State = st6;
 End If;
 When st7 =>
 count = b"1";
 If done then State = st0;
 Else State = st7;
 End If;
 End Case;
End;

